
Preprint

Published version can be access at Springer Link:
https://link.springer.com/chapter/10.1007%2F978-3-319-74310-3_63

https://link.springer.com/chapter/10.1007%2F978-3-319-74310-3_63

Understanding the Differences Between Novice and
Expert Programmers in Memorizing Source Code

Matthias Kramer1, Mike Barkmin1, David Tobinski2 and Torsten Brinda1

1 University of Duisburg-Essen, Didactics of Informatics, Essen, Germany
{matthias.kramer, mike.barkmin, torsten.brinda}@uni-due.de

2 University of Duisburg-Essen, Cognitive and Educational Psychology, Essen, Germany
david.tobinski@uni-due.de

Abstract. This study investigates the difference between novice and expert
programmers in memorizing source code. The categorization was based on a
questionnaire, which measured the self-estimated programming experience. An
instrument for assessing the ability to memorize source code was developed.
Also, well-known cognitive tests for measuring working memory capacity and
attention were used, based on the work of Kellog and Hayes. Forty-two
participants transcribed items which were hidden initially but could be revealed
by the participants at will. We recorded all keystrokes, counted the lookups and
measured the lookup time. The results suggest that experts could memorize
more source code at once, because they used fewer lookups and less lookup
time. By investigating the items in more detail, we found that it is possible that
experts memorize short source codes in semantic entities, whereas novice
programmers memorize them line by line. Because our experts were
significantly better in the performed memory capacity tests, our findings must
be viewed with caution. Therefore, there is a definite need to investigate the
correlation between working memory and self-estimated programming
experience.

Keywords. Assessment; Object-oriented programming; Working memory;
Programming experience

1 Introduction

The identification and empirical validation of competency structures have been one of
the core topics in German educational research during the last few years, see [1.,2.].
Fueled in addition by the results of international comparative studies such as PISA 1,
TIMSS and PIRLS2 the German educational system had to undergo a rigorous
restructuring process [3.] from an input oriented and teacher centered system to an
output oriented and learner centered system. Instead of concentrating on the specific
content to teach, the focus shifted to the skills and abilities that learners need to solve
problems in a specific situation. These skills and abilities are typically described with

1 See https://www.oecd.org/pisa/
2 See http://timss.bc.edu/

the term competency. A precise definition was given by Weinert and can be found in
[4.].

During this shift, a priority programme3 of the German national science foundation,
the DFG, was initiated. The research areas covered several educational fields and
ranged from the theoretical derivation of competencies and their gathering in
competency models up to practical implications for people who work in the
educational field [5.]. The approaches in the numerous sub-projects were the basis for
our project COMMOOP which deals with the determination and empirical validation
of competencies from beginners in the area of object-oriented programming (OOP).
The process of literature-based derivation as well as a first resulting version of the
competency model is documented in [6.]. First assessment results for the competency
facets of recognizing object-oriented syntax elements in given source code can be
found in [7.].

These results already gave first hints, that beginners identify syntax elements based
on taught code conventions, such as position of elements in the code or upper/lower
case of letters but not on a semantic level. Based on these results and referring to the
results of Adelson [8.] we assume that programming experts have internalized the
programming syntax. Hence, we hypothesize that they mentally compile given code
structures into semantic entities and memorize the working algorithm behind while
beginners tend to memorize syntactic elements. To confirm this hypothesis, we
conducted a test where we asked participants to reproduce given code. Furthermore,
we investigated the influence of the working memory to examine the contributions of
“natural” memorization abilities. Referring to our competency model, this test
assesses competency facets Syntax and Semantics from the competency dimension
Mastering Representation in conjunction with the cognitive process of Remembering.
In Section 2 we give an overview on the theoretical work on the concept of working
memory in the field of cognitive psychology as well as research results with similar
settings. Section 3 includes the description of the test instrument and the items
included there. A presentation of the results of a first test is given in Section 4,
followed by a discussion in Section 5 and an outlook for further work in Section 6.

2 Background and Related Work

Basic processes such as editing a natural language text may require some cognitive
systems. For example, Kellog [9.] assumed, that specific parts of the working memory
are used in such processes. Hayes [10.] independently proposed a broader model of
the role of working memory in writing natural language texts, which also shows the
interaction between an individual and a task environment. He divided the task
environment into two interacting components – the social environment and the
physical environment. The individual was categorized into motivation, cognitive
processes, long-term memory and working memory, which also interact with each
other. Although programming languages are formal languages, the model gave us an
indication on which interactions could happen during the process of writing source
code. Because we used this model as a reference for a transcription task, which only

3 See http://kompetenzmodelle.dipf.de/en/

involved reproducing source code, the task environment and the motivation/affect
component were not relevant for our study and hence we reduced the model by taking
only the individual component in account.

Therefore, we reduced the model, by only considering long-term memory, working
memory and cognitive processes (see Fig. 1) and translated the components. The
cognitive process “text interpretation” was translated to “code analyzing” and “text
production” to “code production”. Long-term memory components were replaced
with “OOP knowledge and skills” and “mastering representations” as proposed in our
competency structure model [6.]. Due to our aforementioned interest in code
reproduction, we were specifically interested in assessing the participant’s working
memory. Hayes derived the working memory component from Baddeley's and Hitch's
model [11.], which consists of the following four parts:

1. phonological loop/memory (stores phonological information, such as a
telephone number, and prevents its decay by continuously refreshing it in
a rehearsal loop)

2. visuo-spatial (visual/spatial) sketchpad (stores visual and spatial
information, such as the arrangement of chairs in a room)

3. semantic memory/episodic buffer (contains information that combine
phonological, visual, and spatial information)

4. central executive (controls the attention and therefore filters unnecessary
information and coordinates cognitive tasks)

Fig. 1. Reduced Hayes-Flower-Model (Source: [10.], p.4)

In the last decades, there have been several studies to show the interaction of these
components in various contexts. In 1965, de Groot [12.] conducted a study with
master chess players, which proved that they only need five seconds to study a
midgame board to reproduce it with 90% accuracy. Chase and Simon [13.]
reproduced the study and found that, master chess players memorized attacking and
defending formations, rather than individual pieces. Thus, they could reproduce the
board with a much higher accuracy than normal chess players. Adelson [7.] used the
results of de Groot and Chase and Simon to test if this phenomenon occurs in
programming related tasks as well. In Adelson's experiment novice and expert
programmers were shown sixteen randomly ordered lines of Polymorphic
Programming Language source code, which they should remember and later recall.
By testing five novices and five experts, Adelson found that experts are more likely to
remember a higher number of source code lines. This study also investigated why
experts are more capable of memorizing the source code lines. Adelson found, that

novice programmers tried to memorize the source code in syntactic categories.
Experts, however, tried to memorize it in semantic categories. So, Adelson concluded
that with more expertise, the categories, which are used to remember source code, are
getting more complex.

This paper attempts to combine Adelson's and de Groot's ideas by changing the
amount of code given at a time. We wanted to find out, if the same behavior as
described by Adelson occurs, when the subjects get to view the full source code at
once like de Groot's experiment. Moreover, our purpose was to extend the existing
research by taking a psychological perspective into regard. We therefore designed a
study in which the subjects do not only run through programming tasks but also
through tests from the domain of the cognitive psychology.

3 Methodology

In this study, most of the participants were tested using well-known cognitive tests to
measure the attention ability and working memory capacity. They also transcribed
natural language texts and source codes to tests if there is a difference between expert
and novice programmers. The complete test design is described in Section 3.1,
followed by an explanation on how we constructed the items in Section 3.2 and an
overview of our participants is given in Section 3.3.

3.1 Design

To identify a correlation between the performance in memorizing and reproducing
source code and programming experience, we proceeded in two steps.

In the first step, we gathered four well-reviewed cognitive tests to measure the
attention ability and working memory capacity of the subjects. One of the most
prominent tools for assessing the visual-spatial sketchpad is the Corsi block-tapping-
test [14.]. It is originally executed on a wooden board with blocks on it, but for our
study we used a computer-based version to better control the experimenter artifact.
For relating our results with the ones of Brunetti et al. [15.], who already developed
and tested an e-Corsi test in 2014, we took their description as a draft for our
implementation. For further measuring of the working memory, we used two modules
of the intelligence structure test I-S-T 2000R [16.]. One of them is used to measure
the ability to memorize verbal expression (capacity of the phonological loop),
whereas the other focused on figural objects (capacity of the visuo-spatial sketchpad).
To quantify the attention of the subjects (central executive), we used the d2 test of
attention [17.], which measures the selective and sustained attention and visual
scanning speed.

In the second step, we tested the ability to memorize and reproduce source code.
For that purpose, we asked the subjects to transcribe text. First, the content was
presented on the left side of the screen and should be transcribed to a text area on the
right side of the same screen. This was used to calculate the typing speed (keystrokes
per seconds) of the subjects. Afterwards, the content was hidden but could be revealed

by the participants on their own demand. To prevent the subjects from cheating by
taking notes or a picture, the text was only revealed if the keys <CTRL> and <ALT>
and a mouse button were pressed. A pretest has shown, that we cannot require a 100
percent match, because in some cases misspellings or transpositions of two nearby
characters were hard to find and have resulted in a much longer time required to
process an item. Therefore, we used the Levenshtein-distance [18.] to determine how
similar a subject's text and the correct one was. The algorithm calculates the minimum
distance between two strings. The minimum distance is defined as the smallest
number of deletions, insertions and reversals that will transform a string A into a
string B. After another test, we found, that 95 percent similarity (one minus current
Levenshtein-distance divided by Levenshtein-distance with an empty string) was a
good threshold. The subjects were informed on the current similarity of their text with
the correct one, by showing a process indicator above the text area. It changed its
color to green, when the threshold was reached to indicate that the subject can submit
his/her work. During each keystroke, we have saved the respective key, the time and
the Levenshtein-distance. We also saved each period when the hidden text was
revealed and concealed again. Keeping in mind this format could have been unknown
to the subjects, we implemented test items for the hidden and for the visible content
tasks.

The pretests already gave us the hint that both parts of the test (assessment of the
several parts of the working memory as well as reproducing source code) could
respectively be finished in about 30 minutes, so that the whole test didn’t take up
more time than 60 minutes altogether. After these tests were completed, the subjects
were asked to give further information on their programming experience in a
questionnaire. Five items were constructed using the results of Siegmund et al. [19.],
who researched the correlation between questionnaires used in other researches and
performance in solving program-comprehension tasks. They have found that self-
estimation indicates programming experience well.

3.2 Item construction

For the hidden content task three groups of three items were constructed. Each group
contained a source code with a class structure, a source code with an algorithm and a
natural text. These should be comparable to each other in the dimension of character
count and complexity. For the items of group 1 see Fig. 2.

public class Haus {
 private int nummer;
 private String farbe;

 public void
 streiche(String farbe) {
 this.farbe = farbe;
 }
}

Lettland ist ein
Staat im Osten von
Europa. Er liegt an
der Ostsee und
gehört zu den
baltischen Staaten.
Die beiden anderen
sind Estland und
Litauen.

boolean istVielfaches(int
 zahl, int vielfaches) {
 if(vielfaches % zahl ==
 0){
 return true;
 } else {
 return false;
 }
}

Fig. 2. Item Group 1

Items of group 2 consists of a class “Datei” composed of two attributes, a
constructor and a setter, a text about “Lettland” and an algorithm “einruecken” to
indent a given string by using a symbol. The last group contained an item with a class
“Vieleck” and a subclass “Dreieck”, a text about “Allerheiligen” and an algorithm
“istPrimzahl” to test if a number is prime. Therefore, we calculated the complexity of
the classes with the weighted class complexity (WCC) by Misra and Adewumi [20.].
We have chosen this complexity metric, because it uses a cognitive weight for basic
control structures to calculate a method complexity (MC), which we used for the
algorithms.

The complexity of the texts was calculated by using a readability index, which
indicates how easy it is to read the text. It should be mentioned, that understanding the
text is not considered. Because the readability is dependent on the grammar of the
language, we used special readability indexes for German, namely the Flesh-Reading-
Ease for German (FRE) [21.], based on the original Flesh-Reading-Ease [22.], which
calculates the readability in values between 0 and 100 (lower = more difficult to
read), and the “Wiener-Sachtext-Formel” (WSF) [23.], which calculates the
readability in school years between 4 and 15 (higher = more difficult to read). We
took these two, because they make slightly different assumptions of what is difficult
to read. By respecting both we can argue, that our chosen texts got increasingly more
complex to read in every aspect.

These considerations resulted in three groups. The first group contains items with
the lowest character count and complexity. The last group contains items with the
highest character count and complexity compared to the others.

Table 1. Item Groups

Group
Class Text Algorithm
Chars WCC Chars FRE WSF Chars MC

Group 1 147 3 149 79 5 146 2
Group 2 219 5 206 69 8 214 4
Group 3 237 7 221 49 10 244 8

For the visible content task, we constructed two items, one text and one algorithm,
which were comparable in character count and complexity to the items of group 3.

3.3 Participants

Forty-two students were recruited for this study. Thirty of them studied in a field
related to computer science and had at least finished an introduction course for object-
oriented programming. Of this group, six had a bachelor’s degree and two a master’s
degrees. The remaining students studied something unrelated to computer science.
One third of the sample size were female.

4 Results

We have used the recorded keystrokes and lookup times to analyze the difference
between novice and experts for each item. Therefore, we have divided the group into
novice and experts by using the median of the sum of the programming experience
items of the questionnaire. This is allowed, because the internal consistency of the
five items was excellent (cronbach’s alpha = 0.96). The maximum score possible was
50, the lowest 5 and the median 29.
The typing speed and error rate (percentage of and <Backspace>) of the
subjects showed no significant correlation with the programming experience. The
performance of the subjects in the Corsi block-tapping-test did not significantly
correlated with our measures. The d2 test only correlated with the last item of our test
(r = 0.37, p-value = 0.0248).

4.1 Lookup Count

We found, that a higher score in the working memory test correlated with the
difference in lookup count in many of our items (see Table 2). Also, the programming
experience correlated with all items expect Class2. Therefore, we tested if we could
find group differences between novice and experts by executing a Mann-Whitney U
test analysis. We used this test, because our data was not normally distributed which
we found out by using the Kolmogorow-Smirnow-test.

Table 2. Correlation between lookup count, working memory and programming
experience (IST-F = I-S-T 2000R figural, IST-V = I-S-T 2000R verbal, PE =
programming experience)

Class1 Algo1 Class2 Algo2 Class3 Algo3
IST-F 0.42* 0.46** 0.13 0.10 0.47** 0.39*
IST-V 0.47** 0.36* -0.01 0.25 0.48** 0.69***
PE 0.52*** 0.73*** 0.28 0.22 0.33* 0.43*

Note: * p < .05; ** p < .01; *** p < .001

The U test analysis showed, that the difference in lookup count between the normal
text and the source codes was significantly higher for the novice than for the experts
in the items of the first group (class: W = 91, p-value = 0.0015, algorithm: W = 61, p-
value = 0.001). The mean lookup count of novices was 2.47 units higher for the class
item and 3.24 units higher for the algorithm one than for the lookup count of the first
normal text. Experts had a mean lookup count difference of -0.40 for the class item
and 0.40 for the algorithm one. The lookup count difference in class item of the third
group was significantly (W = 104, p-value = 0.045) higher for the novice (4.24) then
for the experts (2.4). The algorithmic item and second group showed no significance
(p-values between 0.27 and 0.75) in this regard.

4.2 Lookup Time

The programming experience correlated significantly with Class1, Algo1, Class2,
Algo3. The verbal working memory test only correlated with Class2 and the figural
working memory test only correlated with Algo3 (see Table 3).

Table 3. Correlation between lookup time, working memory and programming
experience (IST-F = I-S-T 2000R figural, IST-V = I-S-T 2000R verbal, PE =
programming experience)

Class1 Algo1 Class2 Algo2 Class3 Algo3
IST-F 0.40* 0.43** 0.18 -0.03 0.27 0.38*
IST-V 0.15 0.20 0.07 0.03 0.11 0.41*
PE 0.53*** 0.71*** 0.39* 0.24 0.22 0.38*

Note: * p < .05; ** p < .01; *** p < .001

Table 4 shows the results of the U test analysis. There was a significant difference
between experts and novices regarding the lookup time difference in items Class1,
Algo1 and Class3.

Table 4. U test results. Lookup time difference between experts and novices.

Class1 Algo1 Class2 Algo2 Class3 Algo3
Experts 2.01 3.05 8.64 -7.54 -4.64 -8.58
Novices -6.30 -7.89 0.30 -12.83 -9.60 -18.50
W 73*** 55*** 116 140 96* 120

Note: * p < .05; ** p < .01; *** p < .001

4.3 Working Memory

Because general working memory capacity could influence our results, we also tested
on group difference in regard to the I-S-T 2000R verbal and figural score. Only in
figural working memory we could find a significant difference (IST-V: W = 132, p-
value = 0.212, IST-F: W = 81, p-value = 0.006), hence our experts had a better
working memory capacity in this regard.

5 Discussion

It was hypothesized that expert programmers would memorize the working
algorithm or class structure, while novices would tend to memorize syntactic
elements. The results of this study indicate that this might be true. We have found that
the lookup count difference between novices and experts was significantly different
but only for the items of the first group and for the item Class3. A possible
explanation for this might be that with increasing length and complexity the experts
were not able to recognize the underlying class structure or algorithm. Therefore, they
might have needed to memorize the source code line by line as novices needed to do.

We also found that experts needed fewer lookups for the first class item but more
lookups for the first algorithm than for the first normal text. An implication of this is
the possibility that experts remember classes easier than algorithms. This evidence is
also supported by the U test analysis of the lookup time difference. We have found
that the lookup time difference between novices and experts was significantly
different for the same items. It can thus be suggested that expert programmers are
more familiar with the syntax of the programming language and therefore do not need
to remember all syntactic elements which leads to less lookup time. It is also notable
that expert programmers looked at the items of the first less than they looked at the
normal text. Whereas the class items of the third group was looked at more than the
normal text. This finding also suggests that experts memorize shorter source codes on
a semantic level, therefore they needed less lookup time. However, when the source
codes got increasingly longer and more complex expert programmers might only
benefit from their familiarity in the syntax of the programming language. Therefore, it
makes sense that the longest and most complex algorithm showed no difference
between experts and novices. Hence our results are in line with Adelson’s [8.] but a
note of caution is due here since our experts had a significantly better working
memory capacity than our novices. This could have influenced our results.

6 Conclusion

This study has identified that expert programmers are better in memorizing source
code than novices. We also have found that expert programmers performed
differently when presented long and complex source code than short and less complex
source codes. These results support the idea that expert programmers memorize
source code in semantic entities, whereas novice programmers memorize source code
in syntactical entities as found by Adelson [8.]. One source of weakness in this study
which could have affected our results was the significant difference in working
memory capacity between novices and experts. This issue of the correlation between
working memory capacity and programming experience is an intriguing one which
could be usefully explored in further research. There is, therefore, a definite need for
conducting a similar study as presented in this paper, when the correlation between
memory capacity and programming experience is clearer.

References

1. Klieme, E., Hartig, J., Rauch, D.: The concept of competence in educational contexts.
Assessment of competencies in educational contexts. 3-22 (2008)

2. Koeppen, K., Hartig, J., Klieme, E., Leutner, D.: Current issues in competence modeling
and assessment. Zeitschrift für Psychologie/Journal of Psychology. 216(2), 61-73 (2008)

3. Martens, K., Niemann, D.: When do numbers count? The differential impact of the PISA
rating and ranking on education policy in Germany and the US. German Politics. 22(3),
314-332 (2013)

4. Weinert, F.E.: Concept of competence: A conceptual clarification. In Rychen, D.,
Salganik, S., Hersh, L. (eds.) Defining and selecting key competencies. Hogrefe & Huber
Publishers, Ashland, OH, US (2001)

5. Leutner, D., Fleischer, J., Grünkorn, J., Klieme, E. (eds.): Competence Assessment in
Education – Research, Models and Instruments. Springer International Publishing (2017)

6. Kramer, M.; Hubwieser, P.; Brinda, T.: A Competency Structure Model of Object-
Oriented Programming. In: 2016 International Conference on Learning and Teaching in
Computing and Engineering (LaTICE). IEEE, 1-8 (2016).

7. Kramer, M.; Tobinski, D.; Brinda, T.: On the Way to a Test Instrument for Object-
Oriented Programming Competencies. In: Proceedings of the 16th Koli Calling
International Conference on Computing Education Research. ACM, 145-149 (2016).

8. Adelson, B.: Problem solving and the development of abstract categories in programming
languages. Memory & Cognition. 9(4), 422-433 (1981)

9. Kellog, R.T.: A model of working memory in writing. The cognitive demands of writing:
processing capacity and working memory in text production. Amsterdam University Press.
57-71 (1996)

10. Hayes, J.R.: A new framework for understanding cognition and affect in writing.
Perspectives on writing: Research, theory, and practice. 6 (1996)

11. Baddeley, A.D., Hitch, G.: Working memory. The Psychology of Learning and
Motivation. 8, 47-89 (1974)

12. de Groot, A.: Thought and Choice in Chess. De Gruyter (2014)
13. Chase, W.G., Simon, H.A.: Perception in chess. Cognitive Psychology. 4(1), 55-81 (1973)
14. Corsi, P.: Human Memory and the Medial Temporal Region of the Brain. McGill

University (1972)
15. Brunetti, R., Gatto, C.D., Delogu, F.: ecorsi: Implementation and testing of the corsi

block-tapping task for digital tablets. Frontiers in Psychology. 5 (2014)
16. Beauducel, A.: Intelligence structure test: IST. Hogrefe (2009)
17. Bates, M.E., Lemay, E.P.: The d2 test of attention: construct validity and extensions in

scoring techniques. Journal of the International Neuropsychological Society. 10(3), 392-
400 (2004)

18. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady. 10, 707 (1966)

19. Siegmund, J., Kästner, C., Liebig, J., Apel, S., Hanenberg, S.: Measuring and modeling
programming experience. Empirical Software Engineering. 19(5), 1299-1334 (2014)

20. Misra, S., Adewumi, A.: Object-oriented cognitive complexity measures. In Handbook of
Research on Innovations in Systems and Software Engineering. IGI Global, Hershey, PA
(2015)

21. Amstad, T.: Wie verständlich sind unsere Zeitungen? University of Zurich (1978)
22. Flesch, R.: A new readability yardstick. Journal of Applied Psychology 32(3), 221-233

(1948)
23. Bamberger, R.: Lesen - verstehen - lernen - schreiben: die Schwierigkeitsstufen von

Texten in deutscher Sprache. Jugend und Volk [u.a.]. Wien (1984)

	4.2 Lookup Time
	4.3 Working Memory
	5 Discussion
	6 Conclusion

