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Abstract. This  study  investigates  the  difference  between novice  and  expert
programmers in memorizing source code. The categorization was based on a
questionnaire, which measured the self-estimated programming experience. An
instrument for assessing the ability to memorize source code was developed.
Also, well-known cognitive tests for measuring working memory capacity and
attention  were  used,  based  on  the  work  of  Kellog  and  Hayes.  Forty-two
participants transcribed items which were hidden initially but could be revealed
by the participants at will. We recorded all keystrokes, counted the lookups and
measured the lookup time.  The results  suggest  that  experts  could memorize
more source code at once, because they used fewer lookups and less lookup
time. By investigating the items in more detail, we found that it is possible that
experts  memorize  short  source  codes  in  semantic  entities,  whereas  novice
programmers  memorize  them  line  by  line.  Because  our  experts  were
significantly better in the performed memory capacity tests, our findings must
be viewed with caution. Therefore, there is a definite need to investigate the
correlation  between  working  memory  and  self-estimated  programming
experience.
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Programming experience

1   Introduction

The identification and empirical validation of competency structures have been one of
the core topics in German educational research during the last few years, see [1.,2.].
Fueled in addition by the results of international comparative studies such as PISA 1,
TIMSS  and  PIRLS2 the  German  educational  system  had  to  undergo  a  rigorous
restructuring process [3.] from an input oriented and teacher centered system to an
output oriented and learner centered system. Instead of concentrating on the specific
content to teach, the focus shifted to the skills and abilities that learners need to solve
problems in a specific situation. These skills and abilities are typically described with

1  See https://www.oecd.org/pisa/
2  See http://timss.bc.edu/



the term competency. A precise definition was given by Weinert and can be found in
[4.].

During this shift, a priority programme3 of the German national science foundation,
the DFG, was initiated.  The research areas  covered  several  educational  fields and
ranged  from  the  theoretical  derivation  of  competencies  and  their  gathering  in
competency  models  up  to  practical  implications  for  people  who  work  in  the
educational field [5.]. The approaches in the numerous sub-projects were the basis for
our project COMMOOP which deals with the determination and empirical validation
of competencies from beginners in the area of object-oriented programming (OOP).
The process of literature-based derivation as well as a first resulting version of the
competency model is documented in [6.]. First assessment results for the competency
facets  of recognizing object-oriented syntax elements in given source code can be
found in [7.].

These results already gave first hints, that beginners identify syntax elements based
on taught code conventions, such as position of elements in the code or upper/lower
case of letters but not on a semantic level. Based on these results and referring to the
results of Adelson [8.] we assume that  programming experts  have internalized the
programming syntax. Hence, we hypothesize that they mentally compile given code
structures into semantic entities and memorize the working algorithm behind while
beginners  tend  to  memorize  syntactic  elements.  To  confirm  this  hypothesis,  we
conducted a test where we asked participants to reproduce given code. Furthermore,
we investigated the influence of the working memory to examine the contributions of
“natural”  memorization  abilities.  Referring  to  our  competency  model,  this  test
assesses competency facets  Syntax and Semantics from the competency dimension
Mastering Representation in conjunction with the cognitive process of Remembering.
In Section 2 we give an overview on the theoretical work on the concept of working
memory in the field of cognitive psychology as well as research results with similar
settings.  Section  3  includes  the  description  of  the  test  instrument  and  the  items
included there.  A presentation  of  the  results  of  a  first  test  is  given  in  Section 4,
followed by a discussion in Section 5 and an outlook for further work in Section 6.

2   Background and Related Work

Basic processes such as editing a natural language text may require some cognitive
systems. For example, Kellog [9.] assumed, that specific parts of the working memory
are used in such processes. Hayes [10.] independently proposed a broader model of
the role of working memory in writing natural language texts, which also shows the
interaction  between  an  individual  and  a  task  environment.  He  divided  the  task
environment  into  two  interacting  components  –  the  social  environment  and  the
physical  environment.  The  individual  was  categorized  into  motivation,  cognitive
processes,  long-term memory and working memory, which also interact  with each
other. Although programming languages are formal languages, the model gave us an
indication on which interactions could happen during the process of writing source
code. Because we used this model as a reference for a transcription task, which only

3  See http://kompetenzmodelle.dipf.de/en/



involved  reproducing  source  code,  the task environment  and the motivation/affect
component were not relevant for our study and hence we reduced the model by taking
only the individual component in account.

Therefore, we reduced the model, by only considering long-term memory, working
memory and cognitive  processes  (see  Fig.  1)  and  translated  the components.  The
cognitive process “text interpretation” was translated to “code analyzing” and “text
production” to “code production”.   Long-term memory components were  replaced
with “OOP knowledge and skills” and “mastering representations” as proposed in our
competency  structure  model  [6.].  Due  to  our  aforementioned  interest  in  code
reproduction, we were specifically interested in assessing the participant’s working
memory. Hayes derived the working memory component from Baddeley's and Hitch's
model [11.], which consists of the following four parts:

1. phonological  loop/memory  (stores  phonological  information,  such  as  a
telephone number, and prevents its decay by continuously refreshing it in
a rehearsal loop)

2. visuo-spatial  (visual/spatial)  sketchpad  (stores  visual  and  spatial
information, such as the arrangement of chairs in a room)

3. semantic  memory/episodic  buffer  (contains  information  that  combine
phonological, visual, and spatial information)

4. central executive (controls the attention and therefore filters unnecessary
information and coordinates cognitive tasks)

Fig.  1. Reduced Hayes-Flower-Model (Source: [10.], p.4)

In the last decades, there have been several studies to show the interaction of these
components  in  various  contexts.  In  1965,  de  Groot  [12.]  conducted  a  study with
master  chess  players,  which  proved  that  they  only  need  five  seconds  to  study  a
midgame  board  to  reproduce  it  with  90%  accuracy.  Chase  and  Simon  [13.]
reproduced the study and found that, master chess players memorized attacking and
defending formations, rather than individual pieces. Thus, they could reproduce the
board with a much higher accuracy than normal chess players. Adelson [7.] used the
results  of  de  Groot  and  Chase  and  Simon  to  test  if  this  phenomenon  occurs  in
programming  related  tasks  as  well.  In  Adelson's  experiment  novice  and  expert
programmers  were  shown  sixteen  randomly  ordered  lines  of  Polymorphic
Programming Language source code, which they should remember and later recall.
By testing five novices and five experts, Adelson found that experts are more likely to
remember a higher number of source code lines. This study also investigated why
experts are more capable of memorizing the source code lines. Adelson found, that



novice  programmers  tried  to  memorize  the  source  code  in  syntactic  categories.
Experts, however, tried to memorize it in semantic categories. So, Adelson concluded
that with more expertise, the categories, which are used to remember source code, are
getting more complex.

This paper attempts to combine Adelson's and de Groot's ideas by changing the
amount of  code given at  a time. We wanted to find out,  if  the same behavior  as
described by Adelson occurs, when the subjects get to view the full source code at
once like de Groot's experiment. Moreover, our purpose was to extend the existing
research by taking a psychological perspective into regard. We therefore designed a
study in which  the subjects  do not  only run  through programming tasks  but  also
through tests from the domain of the cognitive psychology.

3   Methodology

In this study, most of the participants were tested using well-known cognitive tests to
measure the attention ability and working memory capacity.  They also transcribed
natural language texts and source codes to tests if there is a difference between expert
and  novice  programmers.  The  complete  test  design  is  described  in  Section  3.1,
followed by an explanation on how we constructed the items in Section 3.2 and an
overview of our participants is given in Section 3.3.

3.1  Design

To identify a correlation between the performance in memorizing and reproducing
source code and programming experience, we proceeded in two steps.

In the first step, we gathered four well-reviewed cognitive tests to measure the
attention  ability  and  working  memory  capacity  of  the  subjects.  One  of  the  most
prominent tools for assessing the visual-spatial sketchpad is the Corsi block-tapping-
test [14.]. It is originally executed on a wooden board with blocks on it, but for our
study we used a computer-based version to better control the experimenter artifact.
For relating our results with the ones of Brunetti et al. [15.], who already developed
and  tested  an  e-Corsi  test  in  2014,  we  took  their  description  as  a  draft  for  our
implementation. For further measuring of the working memory, we used two modules
of the intelligence structure test I-S-T 2000R [16.]. One of them is used to measure
the  ability  to  memorize  verbal  expression  (capacity  of  the  phonological  loop),
whereas the other focused on figural objects (capacity of the visuo-spatial sketchpad).
To quantify the attention of the subjects (central executive), we used the d2 test of
attention  [17.],  which  measures  the  selective  and  sustained  attention  and  visual
scanning speed. 

In the second step, we tested the ability to memorize and reproduce source code.
For  that  purpose,  we  asked  the  subjects  to  transcribe  text.  First,  the  content  was
presented on the left side of the screen and should be transcribed to a text area on the
right side of the same screen. This was used to calculate the typing speed (keystrokes
per seconds) of the subjects. Afterwards, the content was hidden but could be revealed



by the participants on their own demand. To prevent the subjects from cheating by
taking notes or a picture, the text was only revealed if the keys <CTRL> and <ALT>
and a mouse button were pressed. A pretest has shown, that we cannot require a 100
percent match, because in some cases misspellings or transpositions of two nearby
characters  were  hard to find and have resulted in a much longer time required to
process an item. Therefore, we used the Levenshtein-distance [18.] to determine how
similar a subject's text and the correct one was. The algorithm calculates the minimum
distance  between  two  strings.  The  minimum  distance  is  defined  as  the  smallest
number of deletions, insertions and reversals that  will  transform a string A into a
string B. After another test, we found, that 95 percent similarity (one minus current
Levenshtein-distance divided by Levenshtein-distance with an empty string) was a
good threshold. The subjects were informed on the current similarity of their text with
the correct one, by showing a process indicator above the text area.  It changed its
color to green, when the threshold was reached to indicate that the subject can submit
his/her work. During each keystroke, we have saved the respective key, the time and
the  Levenshtein-distance.  We  also  saved  each  period  when  the  hidden  text  was
revealed and concealed again. Keeping in mind this format could have been unknown
to the subjects, we implemented test items for the hidden and for the visible content
tasks.

The pretests already gave us the hint that both parts of the test (assessment of the
several  parts  of  the  working  memory  as  well  as  reproducing  source  code)  could
respectively be finished in about 30 minutes, so that the whole test didn’t take up
more time than 60 minutes altogether. After these tests were completed, the subjects
were  asked  to  give  further  information  on  their  programming  experience  in  a
questionnaire. Five items were constructed using the results of Siegmund et al. [19.],
who researched the correlation between questionnaires used in other researches and
performance  in  solving  program-comprehension  tasks.  They have  found that  self-
estimation indicates programming experience well.

3.2  Item construction

For the hidden content task three groups of three items were constructed. Each group
contained a source code with a class structure, a source code with an algorithm and a
natural text. These should be comparable to each other in the dimension of character
count and complexity. For the items of group 1 see Fig. 2.

public class Haus {
  private int nummer;
  private String farbe;

  public void
   streiche(String farbe) {
    this.farbe = farbe;
  }
}

Lettland ist ein 
Staat im Osten von 
Europa. Er liegt an 
der Ostsee und 
gehört zu den 
baltischen Staaten. 
Die beiden anderen 
sind Estland und 
Litauen.

boolean istVielfaches(int
    zahl, int vielfaches) {
  if(vielfaches % zahl ==
        0){
     return true;
  } else {
     return false;
  }
}

Fig.  2. Item Group 1



Items  of  group  2  consists  of  a  class  “Datei”  composed  of  two  attributes,  a
constructor and a setter,  a text  about “Lettland” and an algorithm “einruecken” to
indent a given string by using a symbol. The last group contained an item with a class
“Vieleck” and a subclass “Dreieck”, a text about “Allerheiligen” and an algorithm
“istPrimzahl” to test if a number is prime.  Therefore, we calculated the complexity of
the classes with the weighted class complexity (WCC) by Misra and Adewumi [20.].
We have chosen this complexity metric, because it uses a cognitive weight for basic
control  structures  to calculate a  method complexity (MC),  which we used for  the
algorithms.

The complexity of the texts was calculated by using a readability index, which
indicates how easy it is to read the text. It should be mentioned, that understanding the
text is not considered. Because the readability is dependent on the grammar of the
language, we used special readability indexes for German, namely the Flesh-Reading-
Ease for German (FRE) [21.], based on the original Flesh-Reading-Ease [22.], which
calculates  the readability  in  values  between 0 and 100 (lower  = more  difficult  to
read),  and  the  “Wiener-Sachtext-Formel”  (WSF)  [23.],  which  calculates  the
readability in school years between  4 and 15 (higher = more difficult to read). We
took these two, because they make slightly different assumptions of what is difficult
to read.  By respecting both we can argue, that our chosen texts got increasingly more
complex to read in every aspect.

These considerations resulted in three groups. The first group contains items with
the lowest character count and complexity. The last group contains items with the
highest character count and complexity compared to the others.

Table 1. Item Groups

Group
Class Text Algorithm
Chars WCC Chars FRE WSF Chars MC

Group 1 147 3 149 79 5 146 2
Group 2 219 5 206 69 8 214 4
Group 3 237 7 221 49 10 244 8

For the visible content task, we constructed two items, one text and one algorithm,
which were comparable in character count and complexity to the items of group 3.

3.3  Participants

Forty-two students were recruited for  this study. Thirty of them studied in a field
related to computer science and had at least finished an introduction course for object-
oriented programming. Of this group, six had a bachelor’s degree and two a master’s
degrees.  The remaining students studied something unrelated to computer  science.
One third of the sample size were female.



4   Results

We have used the recorded keystrokes and lookup times to analyze the difference
between novice and experts for each item. Therefore, we have divided the group into
novice and experts by using the median of the sum of the programming experience
items of the questionnaire. This is allowed, because the internal consistency of the
five items was excellent (cronbach’s alpha = 0.96). The maximum score possible was
50, the lowest 5 and the median 29.
The  typing  speed  and  error  rate  (percentage  of  <Del>  and  <Backspace>)  of  the
subjects  showed no significant  correlation  with the  programming experience.  The
performance  of  the  subjects  in  the  Corsi  block-tapping-test  did  not  significantly
correlated with our measures. The d2 test only correlated with the last item of our test
(r = 0.37, p-value = 0.0248).

4.1  Lookup Count

We  found,  that  a  higher  score  in  the  working  memory  test  correlated  with  the
difference in lookup count in many of our items (see Table 2). Also, the programming
experience correlated with all items expect Class2. Therefore, we tested if we could
find group differences between novice and experts by executing a Mann-Whitney U
test analysis. We used this test, because our data was not normally distributed which
we found out by using the Kolmogorow-Smirnow-test.

Table  2.  Correlation  between  lookup  count,  working  memory  and  programming
experience  (IST-F  =  I-S-T  2000R  figural,  IST-V  =  I-S-T  2000R  verbal,  PE  =
programming experience)

Class1 Algo1 Class2 Algo2 Class3 Algo3
IST-F 0.42* 0.46** 0.13 0.10 0.47** 0.39*
IST-V 0.47** 0.36* -0.01 0.25 0.48** 0.69***
PE 0.52*** 0.73*** 0.28 0.22 0.33* 0.43*

Note: * p < .05; ** p < .01; *** p < .001

The U test analysis showed, that the difference in lookup count between the normal
text and the source codes was significantly higher for the novice than for the experts
in the items of the first group (class: W = 91, p-value = 0.0015, algorithm: W = 61, p-
value = 0.001). The mean lookup count of novices was 2.47 units higher for the class
item and 3.24 units higher for the algorithm one than for the lookup count of the first
normal text. Experts had a mean lookup count difference of -0.40 for the class item
and 0.40 for the algorithm one. The lookup count difference in class item of the third
group was significantly (W = 104, p-value = 0.045) higher for the novice (4.24) then
for the experts (2.4). The algorithmic item and second group showed no significance
(p-values between 0.27 and 0.75) in this regard.



4.2  Lookup Time

The  programming  experience  correlated  significantly  with  Class1,  Algo1,  Class2,
Algo3. The verbal working memory test only correlated with Class2 and the figural
working memory test only correlated with Algo3 (see Table 3).

Table  3.  Correlation  between  lookup  time,  working  memory  and  programming
experience  (IST-F  =  I-S-T  2000R  figural,  IST-V  =  I-S-T  2000R  verbal,  PE  =
programming experience)

Class1 Algo1 Class2 Algo2 Class3 Algo3
IST-F 0.40* 0.43** 0.18 -0.03 0.27 0.38*
IST-V 0.15 0.20 0.07 0.03 0.11 0.41*
PE 0.53*** 0.71*** 0.39* 0.24 0.22 0.38*

Note: * p < .05; ** p < .01; *** p < .001

Table 4 shows the results of the U test analysis. There was a significant difference
between experts and novices regarding the lookup time difference in items Class1,
Algo1 and Class3.

Table 4.  U test results. Lookup time difference between experts and novices.

Class1 Algo1 Class2 Algo2 Class3 Algo3
Experts 2.01 3.05 8.64 -7.54 -4.64 -8.58
Novices -6.30 -7.89 0.30 -12.83 -9.60 -18.50
W 73*** 55*** 116 140 96* 120

Note: * p < .05; ** p < .01; *** p < .001

4.3  Working Memory

Because general working memory capacity could influence our results, we also tested
on group difference in regard to the I-S-T 2000R verbal and figural score. Only in
figural working memory we could find a significant difference (IST-V: W = 132, p-
value =  0.212,  IST-F: W = 81,  p-value =  0.006),  hence  our  experts  had  a better
working memory capacity in this regard.



5   Discussion

It  was  hypothesized  that  expert  programmers  would  memorize  the  working
algorithm  or  class  structure,  while  novices  would  tend  to  memorize  syntactic
elements. The results of this study indicate that this might be true. We have found that
the lookup count difference between novices and experts was significantly different
but  only  for  the  items  of  the  first  group  and  for  the  item  Class3.  A  possible
explanation for this might be that with increasing length and complexity the experts
were not able to recognize the underlying class structure or algorithm. Therefore, they
might have needed to memorize the source code line by line as novices needed to do. 

We also found that experts needed fewer lookups for the first class item but more
lookups for the first algorithm than for the first normal text. An implication of this is
the possibility that experts remember classes easier than algorithms. This evidence is
also supported by the U test analysis of the lookup time difference. We have found
that  the  lookup  time  difference  between  novices  and  experts  was  significantly
different for the same items. It can thus be suggested that expert programmers are
more familiar with the syntax of the programming language and therefore do not need
to remember all syntactic elements which leads to less lookup time. It is also notable
that expert programmers looked at the items of the first less than they looked at the
normal text. Whereas the class items of the third group was looked at more than the
normal text. This finding also suggests that experts memorize shorter source codes on
a semantic level, therefore they needed less lookup time. However, when the source
codes  got  increasingly  longer  and  more  complex  expert  programmers  might  only
benefit from their familiarity in the syntax of the programming language. Therefore, it
makes  sense  that  the  longest  and  most  complex  algorithm showed  no  difference
between experts and novices. Hence our results are in line with Adelson’s [8.] but a
note  of  caution  is  due  here  since  our  experts  had  a  significantly  better  working
memory capacity than our novices. This could have influenced our results.

6   Conclusion

This study has identified that expert programmers are better in memorizing source
code  than  novices.  We  also  have  found  that  expert  programmers  performed
differently when presented long and complex source code than short and less complex
source  codes.  These  results  support  the  idea  that  expert  programmers  memorize
source code in semantic entities, whereas novice programmers memorize source code
in syntactical entities as found by Adelson [8.]. One source of weakness in this study
which  could  have  affected  our  results  was  the  significant  difference  in  working
memory capacity between novices and experts. This issue of the correlation between
working memory capacity and programming experience is an intriguing one which
could be usefully explored in further research. There is, therefore, a definite need for
conducting a similar study as presented in this paper, when the correlation between
memory capacity and programming experience is clearer.
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